NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
Donaldson L, Ricciardi W, Sheridan S, et al., editors. Textbook of Patient Safety and Clinical Risk Management [Internet]. Cham (CH): Springer; 2021. doi: 10.1007/978-3-030-59403-9_14
Francesco Venneri , Lawrence B. Brown , Francesca Cammelli , and Elliott R. Haut .
4 Division of Acute Care Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
Corresponding author.Published online: December 15, 2020.
The World Health Organization (WHO) Safe Surgery Saves Lives campaign aimed to implement safe surgical procedures and patient safety best practices to reduce the incidence of adverse events both in the operating room and in the ward. For decades, the main objectives of safe surgery were mainly focused on the technical procedure. More recently, the implementation of non-technical skills and interpersonal communication have been found to play a significant role in preventing harm in surgical care settings.
A surgeon is educated with the focus on clinical care, decision-making, and technical skills required to perform surgical procedures techniques that yield the best outcome. Surgery requires skill, adaptation, accuracy, and knowing when it is appropriate to operate. Despite these factors, mistakes still occur in the pre-operative clinic, operating theater, intensive care unit, and surgical ward. Surgeons (and all physicians) should be willing to discuss unsuccessful cases and learn from mistakes throughout their career. These issues should be shared with surgical trainees at all levels including students, residents, and fellows at teaching hospitals, as they are essential for their clinical development. They also provide a context for lifelong learning and personal growth throughout every successful career.
Best practices in medicine have become a must and many health care institutions and systems have embedded safety practices in their goals and quality achievement policies. Patient safety itself has become an “institution” on its own and since the 1999 Institute of Medicine publication “To Err is Human,” risk management programs in health care facilities worldwide have been leading the trends in reducing patient harm and implementing quality assurance in health care so as to contribute to a solid reduction in costs and expenses.
Evidence-based medicine and evidence-based health care data prove that when best practices are well applied in health care procedures, the return in terms of adverse event reduction and patient well-being are assured and are measurable according to standards of health care models recognized worldwide. Physicians, nurses, other health care professionals, policy makers, and stakeholders in medicine rely on a teamwork basis and this must encourage managers and politicians to enhance among professionals the urge to apply best practices, measure them on an appropriateness, efficacy, and efficiency basis and implement all to let them be compliant among health care workers.
This is particularly true and peculiar in the field of surgery. Surgery on its own is considered a craftsman attitude discipline, where individuality and self-appraisal are the most reliable factors for quality assurance; but this is not reliable in terms of outcomes and evidence-based medicine or nursing principals. In other words, surgery relies on evidence-based best practices and surgeons must have this evidence of their success and compliance; otherwise, all may be reluctant of their application and implementation.
Despite its complexity, health care institutions are widely considered to be reliable systems, with the primary intent of “doing no harm.” However, compared to true high reliably organizations such as airlines or nuclear power industries, health care is nowhere close to the safety patients expect. In order to understand the real meaning of safety in surgery, we must first understand the numerous steps required in every surgical setting and the pathway of the surgical patient.
All physicians require strong cognitive skills for decision-making in order to optimize patient outcomes. In addition to these competencies, a surgeon is a specialist in the field of the “manual arts.” In other words, an artisan who uses their hands as a means of cure. The surgical profession throughout the years has radically changed as techniques, procedures, instrumentation, gender, training, costs, risks, and infection control are concerned. Each of these factors play a significant role in patient safety and should be considered with respect to field of surgery.
In the last two decades, surgical procedures have radically changed a surgeon’s approach to patients presenting with surgical pathologies. Additionally, less severe pathologies, such as inguinal hernia or varicose veins, have led to changes from inpatient hospitalizations to outpatient in settings for surgical management. In the 1970s and 1980s, inguinal hernia repair was frequently treated with an overnight hospital stay. Now, this procedure is routinely performed on an outpatient basis. This new way of approaching many surgical diseases has inclined hospitals to place emphasis on outpatient surgery cases. These changes have affected every aspect of surgical care, including the focus on patient safety.
These changes in setting also require higher levels of patient empowerment and improved communications. Patients now must understand the setting in which their surgery will occur and the resulting decreased length of stay be educated on the potential complications that might arise, especially as they may occur at home, rather than in a hospital setting. Changes in techniques and procedures also require that surgical trainees should be compliant to best practices to lower the incidence of adverse events occurring in settings where human factors play a major role. Prosthetics, biological stitches, antibiotic prophylaxis, and prevention of deep venous thrombosis have also radically changed and modified protocols, requiring adjustments and implementation. Patient safety is not static, changes occur frequently and the entire health care community must keep up with them in these ever-changing times. The importance of updating guidelines, searching for evidence-based standards and redesigning the process of surgery were challenges that hospitals, private clinics, and other major surgical settings have had to grapple with. Additionally, attending surgeons have had to rethink how to train residents and fellows in a manner that optimized efficiency without comprising patient outcomes.
Industries manufacturing surgical instruments have gradually updated their knowledge and dedicated all efforts to design and usability of surgical equipment. Many surgeons assist with usability trials before companies introduce new products, equipment, and/or instruments. These steps in human factors engineering (or ergonomics) are important to undertake to maximize patient safety in the operating theater and surgical/procedural suites. Ease of use with minimal training and intuitive designs allows surgeons to rapidly learn how to use the technology and minimize any safety risks to patients due to a long, steep learning curve.
In the field of inguinal hernia repair, prosthetic mesh options have improved over the years. The improved ergonomics of these materials have made them particularly attractive to surgeons performing these procedures. This means that patient may not only stand up a few hours following surgery, but it is a “must” to go home and perform simple maneuvers as walking, driving, and therefore a much faster return to work or other day activities. The aim therefore is a faster recovery from disability and/or discomfort. The concept of minor surgery has been introduced yet it must not be considered less important, but instead as a quicker return to ordinary life. This is also true for less or minor invasive procedures, such as laparoscopic surgery. Laparoscopy radically changed not only the approach to certain pathologies but changed surgeons minds and behaviors.
In recent years, the surgical community has implemented guidelines for Enhanced Recovery After Surgery (ERAS) procedures. This type of protocol has been shown to improve patient outcomes and provide safer care. Standardized guidelines can ensure optimal care to all patients, decrease variation, cut costs, and reduce disparities in care.
Other pathways allow patients to leave the hospital settings following minor surgical procedures such as breast, orthopedic, anorectal, and urologic procedures.
These factors all influence patient safety issues because changes in hospital settings, instrument implementation, training, and health care policies may affect health care professionals, patients, and institutions.
Surgery was once considered a “masculine” discipline, with the stereotype of a hard-working man with a great deal of self-confidence and self-esteem. Since the early 1990s, medical schools have enrolled fewer male students and increased the proportion of women. In the United States, approximately 50% of medical school graduates are now women. This trend has also had an effect on resident trainees in surgery. While this ratio has changed in some surgical fields (i.e., general surgery), it has not changed as much in others (i.e., neurosurgery, urology). The field of surgery has noted many successful female surgeons both in the hospital and in academic domains.
This change in gender population of a specialty, historically linked to male figures, has had an effect on patients’ awareness and way of thinking, yielding a change in behaviors and outcomes. Gender diversity must not only be considered in the surgical field but all across medicine and medical specialties, as it relevant to patient safety and trust. Studies have shown that this gender diversity is associated with improved patient outcomes. Teamwork studies have shown that having even a single woman on the team (as opposed to a team of all men) improves team dynamics, decision-making, and patient safety.
The relationship between surgical safety and training on the use of emerging technologies is important to consider. This issue has been most hotly debated since the development of minimally invasive, laparoscopic, and robotic surgery. While these new technologies may provide less invasive, less painful procedures, the risks compared to open surgery may be the same, or possibly higher. Residents in surgery must follow an accurate training log and acquire not only skills, but also consider the appropriateness and benefits of operating with these approaches. These factors are critically linked to patient safety and risk management. A surgeon never reaches a 100% safe and sure learning curve, but is constantly exposing patients to risks and uncertainty. Teaching hospitals and scientific associations worldwide are focused on reducing learning gaps in the way care is delivered around the globe.
Training must include all aspects of care including decision-making and problem-solving, as well as the manual, technical skills required to physically perform complex surgical procedures. Laparoscopy and robotic surgery have dramatically changed training steps and protocols; many residents are well acquainted with these highly technological approaches. However, open approaches to certain surgery has become less commonly performed; this may represent a gap in problem-solving among young trainees or newly assessed surgeons on their first rounds in hospitals or in operating theaters. A highly trained efficient surgeon in laparoscopic approaches or robotics may find difficulty in approaching an open surgery in case of an emergency situation. This may become a patient safety issue, and patients should be informed of their surgeons’ abilities and case-history if rapid conversion to open surgery is required.
Surgery has true financial costs, and it is expensive as it relates to patient safety and outcomes. These should be issues of main concern not only to hospital managers, but to patients, politicians, and health care policy makers worldwide. Quality indicators and plans for surgical safety should be a point of discussion when a Chief Executive Office (CEO) examines a hospital budget in terms of efficacy and efficiency. Costs and risks influence patient safety in terms of appropriateness; accurate patient selection contributes to limiting not only adverse events, but also implementing quality assurance among health care professionals for their patients. It has been suggested that spending money upfront for quality care and ensuring patient safety will save cost in the long run as outcomes improve. These improved outcomes are also often associated with shorter length of stays, fewer diagnostics tests, and less overall care to mitigate the effects of complications after surgery.
Hospital acquired infections are a major cause of patient morbidity and mortality and represent an important area of concern as it relates to patient safety overall. One area of concern within the realm of surgery is that of surgical site infections. Many approaches have been undertaken to prevent these infections. Some are exceedingly data driven such as the use of pre-operative prophylactic antibiotics before surgical incision. Others, however, are promulgated without strong evidence. Many hospitals are increasingly restricting the use of fabric surgical scrub caps in the operating room, instead favoring disposable bouffants. In 1973, very scant literature demonstrated that providers who carry Staphylococcus aureus in their hair could spread those bacteria to patients. However, more recent data demonstrates that there is no difference in surgical site infections between physicians who wear fabric versus disposable scrub caps. It has also been suggested that personalized fabric scrub caps (identifying name and position) as popularized with the #TheatreCapChallenge hashtag on social media improve closed loop communication within the operating room, which may have implications on improving patient safety. The final decision has not yet been made between the competing goals of improved communication vs. decreasing infections although the authors of this chapter do favor the cloth caps with clinicians’ names.
The checklist approach to improving medical care has been promoted by many physicians, most notably; Dr. Peter Pronovost in his seminal work on checklists to prevent central line-associated bloodstream infections (CLABSI) in the intensive care unit. The concept was introduced into surgery by Dr. Atul Gawande, a surgeon at Harvard Medical School, and who studied the application of a safety instrument in the operating theater. In 2008, The World Health Organization (WHO) promoted a campaign to encourage all health care institutions performing surgery globally to apply the Surgical Safety Checklist in their settings. Studies have demonstrated a 33% reduction of potentially lethal adverse events when this simple surgical checklist is applied. It is based on a simple list of discrete actions to be performed when the patient is admitted to the operating room, before surgical incision, and after the procedure (before returning to the ward). The aim of this instrument is to ensure appropriate equipment is available, reduce wrong-site surgery, confirm patient identity, correct management of the surgical site, avoid or reduce surgical site infection, reduce incidence of DVT (deep venous thrombosis) or pulmonary embolism (PE), prevent the risk of unintentionally retained foreign objects, and assure the appropriate postoperative setting for the patient.
The items included in the checklist are simple to detect and the time required to apply this best practice is estimated to be only 3–4 min. The checklist is divided into actions to be performed before and after the procedure and are named as follows: sign-in, time-out, sign-out. These three phases refer to main issues controlled as correct site, correct procedure, correct patient, equipment control and assessment, antibiotic administration, consolidation of central venous access, sponge count, surgical specimen control and identification, blood availability, and correct postoperative assignment. Surgeons, anesthetists, nurses, and other health care workers in the operating theater, and moreover also in the ward, must believe in this checklist, as it is a cognitive artifact to improve safety and reduce errors.
The above best safety practices may be mentioned all together being an integrated part of the WHO Safe Surgery Saves Lives Campaign manual which enhances safe surgery policies among professionals and institutions to reduce adverse events and prevent harm to patients undergoing surgery. Most of these best practices are promoted on a national basis according to each country’s health care policies and strategies.
While some safety issues are unique to surgery (i.e., wrong-site surgery, unintentionally retained foreign objects), other safety issues overlap with other areas of medicine, although they may be found in surgical patients as well (i.e., prevention of venous thromboembolism, risk of blood transfusion). Surgeons, anesthetists, and nurses must consider all risks to patient safety, not only those unique to surgery. We all need to ensure best practices for every decision in the care of surgical patients. This may include optimal blood pressure, anticoagulation, blood sugar, and other comorbidity management to prevent pre-operative complications including myocardial infarction, stroke, venous thromboembolism, hypoglycemia, delirium, and many others.
Most of the best practices above are a peculiarity of the clinical risk management and patient safety organization within health care facilities. Clinical audit, morbidity and mortality rounds, incident reporting and learning system, sentinel and never event analysis are tools used to diffuse the culture of risk assessment and management in health care and are majorly based on a human factor and cognitive approach promoting a no blame culture and systemic approach method. Global trigger tool assessment is considered to be a best practice because through some error indicators traced within clinical records and other items may easily outline mishaps and errors within the health care system and allow professionals to identify criticalities and promote implementation strategies. These are trigger items identified on a major occurrence basis which prove to surely favor the onset of mistakes or mishaps within a clinical pathway. Sentinel and never events are those which cause either severe harm to patients or death; these are considered to be lethal events that compromise trustworthiness in health care services and professionals. Informed consent, communications errors, and patient empowerment are all best practices on the same threshold; in other words, they are all aligned to assure clear communication to patients, acquire a satisfactory informed consent for procedures and pathways using a simple language and explanations which are understood by all levels of individuals undergoing medical treatment.
Health care is considered to be a complex system, accounting a high reliability level of care and ultrasafe practices to assure no harm to patients as well as to professionals. This may not be true for some realties worldwide. The health care environment is not only complex, but dealing with human beings and events correlated to behavior and disease may lead to harmful outcomes. Due to potentially dangerous nature of medicine, a systems approach is necessary to understanding what went wrong and in what manner may surely help to build safer hospitals, health care settings, equipment and training.
Approaches to improve patient safety include both technical and adaptive work. The technical component has a relatively clear, “right” answer to solve a problem or prevent a safety occurrence in the future. More commonly, the problem requires an adaptive solution. These solutions rely on a change in attitudes, beliefs, and/or behaviors. Cognitive psychology helps us understand why humans make errors and how the human mind manages to deal with them–sometimes detecting unsafe actions before causing harm. This is one of the most important goals of clinical risk management. In order to understand the onset of human errors in health care, we must first understand human factors and their interactions in systems.